

ARBEITS GEMEINSCHAFT QUALITÄTSGUSS e.V.

Werkstoff-Normblatt Nr. 1600/4

Qualität aus einem Guss

FERROCAST® ist der Markenname

für Gussprodukte, die von Gießereien der ARBEITSGEMEINSCHAFT QUALITÄTSGUSS hergestellt und vertrieben werden.

Diese Gussteile erkennen Sie an einem aufgegossenen Q.

Durch konsequente Prozessüberwachung und kontinuierliche Einengung der Streubreiten bieten alle Mitglieder der ARBEITSGEMEINSCHAFT QUALITÄTSGUSS ihren Kunden Werkstoffwerte, die deutliche Vorteile gegenüber den handelsüblichen Norm-Werten aufweisen. Das Qualitätsniveau – insbesondere die Reproduzierbarkeit von Werkstoffqualität und Werkstückbeschaffenheit – sollen dem Kunden wirtschaftliche Vorteile bringen.

Die Mitglieder der AGQ verpflichten sich:

- ein Qualitätsmanagement entsprechend
 DIN EN ISO 9001:2000 anzuwenden
- dieses von einer akkreditierten Zertifizierungsstelle bescheinigen zu lassen
- ihre technische Leistungsfähigkeit weiterzuentwickeln
- ihre Abnehmer in Werkstoffauswahl und gießgerechter Konstruktion zu beraten.

Die AGQ hat mit dem IfG in Düsseldorf einen Rahmenvertrag abgeschlossen, in dem eine zusätzliche externe Überwachung des Qualitätssicherungssystems festgeschrieben ist. Die quartalsmäßig durchzuführenden Audits sollen dabei sicherstellen, dass zwischen den periodischen Überprüfungen durch die Zertifizierungsstellen die vorgegebenen Qualitätsrichtlinien ständig eingehalten werden. Die ARBEITSGEMEINSCHAFT QUALITÄTSGUSS hat sich das Q als Logo erarbeitet, weil es neben dem unbedingten Qualitätsanspruch die ganz-

 den Weg vom flüssigen Eisen bis zum einbaufertigen Gussstück

heitliche Betrachtung symbolisiert:

- von der ersten Entwicklungsidee bis zur

Qualität aus einem Guss!

Gusseisen mit Lamellengraphit

Technologische und physikalische Werte

Werkstoffbezeichnung na DIN EN 1561		Einheit	EN-GJL- 150	EN-GJL- 200	EN-GJL- 250	EN-GJL- 300	EN-GJL- 350	Schrifttum
			EN-JL 1020	EN-JL 1030	EN-JL 1040	EN-JL 1050	EN-JL 1060	
Zugfestigkeit	R_{m}	MPa	150 – 250	200 – 300	250 – 350	300 – 400	350 – 450	1)
0,1 %-Dehngrenze	R _{p0,1}	MPa	98 – 165	130 – 195	165 – 228	195 – 260	228 – 285	[1]
Bruchdehnung	А	%	0,3 – 0,8	0,3 - 0,8	0,3 - 0,8	0,3 - 0,8	0,3 - 0,8	[2]
Druckfestigkeit	σ_{dB}	MPa	600	720	840	960	1080	[1]
0,1 %-Stauchgrenze	$\sigma_{d0,1}$	MPa	195	260	325	390	455	[1]
Biegefestigkeit	σ_{bB}	MPa	250	290	340	390	490	[1]
Scherfestigkeit	σ_{aB}	MPa	170	230	290	345	400	[1]
Torsionsfestigkeit 2)	T _{tB}	MPa	170	230	290	345	400	[1]
Elastizitätsmodul 3)	Е	GPa	78 – 103	88 – 113	103 – 118	108 – 137	123 – 143	[1]
Poisson-Zahl	V	-	0,26	0,26	0,26	0,26	0,26	[2]
Brinellhärte		НВ	160 – 190	180 – 220	190 – 230	200 – 240	210 – 250	[1]
Biegewechselfestigkeit 4)	σ_{bW}	MPa	70	90	120	140	145	[3]
Zug-Druck-Wechselfestigkeit 5)	σ_{zdW}	MPa	40	50	60	75	85	[3]
Bruchzähigkeit	K _{lc}	N/mm ^{3/2}	320	400	480	560	650	[4]
Dichte	Q	g/cm ³	7,10	7,15	7,20	7,25	7,30	-
Spezifische Wärmekapazität Bei 20 bis 200 °C Bei 20 bis 600 °C	С	J/(kg·K)	460 535					[5]
Thermischer Längenausdehn Bei –100 bis +20 °C Bei 20 bis 200 °C Bei 20 bis 400 °C	ungskoe α	effizient µm/(m · K)	10,0 11,7 13,0					[5]
Wärmeleitfähigkeit Bei 100°C Bei 200°C Bei 300°C Bei 400°C Bei 500°C	λ	W/(m·K)	52,5 51,0 50,0 49,0 48,5	50,0 49,0 48,0 47,0 46,0	48,5 47,5 46,5 45,0 44,5	47,5 46,0 45,0 44,0 43,0	45,5 44,5 43,5 42,0 41,5	[5]
Spezifischer elektrischer Widerstand	Q	Ω·mm²/m	0,80	0,77	0,73	0,70	0,67	[5]
Koerzitivfeldstärke	H ₀	A/m	560 – 720					[5] [6]
Maximale Permeabilität	μ	μH/m		220 – 330				
Hystereseverluste bei B = 1 T		kJ/m³			2,5 – 3,0			[5] [6]
Schwindmaß ⁶⁾		%	0,5 – 1,0					-

Eigenschaften im getrennt gegossenen

Probestück mit 30 mm Rohgussdurchmesser

 $^{^{1)}}$ Siehe Tabelle Gusseisen mit Lamellengraphit – Auf das Gussstück bezogene Festigkeitswerte

 $^{^{2)}}$ Torsionswechselfestigkeit $\tau_{tW}\!\approx$ 0,42 x R_{m} [3]

³⁾ Abhängig von Menge und Ausbildungsform des Graphits sowie von der Belastung

Näherungsweise gilt $\sigma_{bW} \approx 0.35$ bis 0,50 x R_m [3]

⁵⁾ Näherungsweise gilt $\sigma_{zdW} \approx 0,53 \text{ x } \sigma_{bW} \approx 0,26 \text{ x R}_{m}$ [3]

⁶⁾ Abhängig von Gestalt und Größe des Gussstückes

^[1] Engineering data on grey cast irons, BCIRA Alv. Birm. 1977

^[2] Nechtelberger, E.; Österreichisches Gießerei-Institut; Bericht A-Nr. 18.670; Leoben 1973

^[3] Hänchen, R.; Dauerfestigkeitsbilder für Stahl und Gusseisen; Carl Hanser Verlag; München 1963

^[4] Speidel, M.O.; Bruchzähigkeit und Ermüdungsrisswachstum von Gusseisen, Z. Werkstofftech. 12 (1981) S. 387-402

^[5] Angus, H.T.; Cast Iron: Physical and Engineering Properties; Hrsg.: Butterworths, London 1976

^[6] Dietrich, H.; Gießerei Techn.-wiss. Beih. 14 (1962) Nr. 2; S. 79/91

Auf das Gussstück bezogene Festigkeitswerte

Werkstoff- bezeichnung	Zugfestigkeit im getrennt	Werte in Abhängigkeit von der Gusswanddicke							
nach DIN EN 1561	gegossenen Probestück ²⁾ [MPa]	Wand [m	m]	im angeg Probes	stück 4)		rwartungswerte im Gussstück		
				[M mi		Zugfes [M Minima	_	Brinellhärte [HB] Maximalwerte	
		über	bis	FERRO- CAST	Norm 6)	FERRO- CAST	Norm	FERRO- CAST	
		2,5	5	_	_	210	180	250	
EN-GJL-150	450 050	5	10	_	_	180	155	225	
EN-JL 1020	150 – 250	10	20	_	_	140	130	205	
		20	40	ı	120	120	110	185	
		2,5	5	-	-	240	230	270	
EN-GJL-200	200 – 300	5	10	_	_	220	205	245	
EN-JL 1030	EN-JL 1030 200 = 300	10	20	-	-	190	180	220	
		20	40	180	170	170	155	200	
		5	10	-	_	275	250	270	
EN-GJL-250	250 – 350	10	20	_	_	240	225	250	
EN-JL 1040		20	40	230	210	220	195	230	
		40	80	210	190	200	170	215	
		10	20	_	_	290	270	260	
		20	40	280	250	265	240	240	
EN-GJL-300 EN-JL 1050	300 – 400	40	80	250	220	235	210	230	
		80	150	230	210	210	195	215	
		150	300	210	190 ⁵⁾	190	-	205	
		10	20	-	_	340	315	275	
EN 0 11 0 E 0		20	40	320	290	310	280	260	
EN-GJL-350 EN-JL 1060	350 – 450	40	80	300	260	275	250	240	
		80	150	275	230	250	225	225	
		150	300	250	210 ⁵⁾	225	-	215	

¹⁾ Die Norm-Bezeichnung bezieht sich auf die Mindestzugfestigkeit im getrennt gegossenen Probestück

Wenn Eigenschaften im Gussstück garantiert werden sollen, muss dies bei Bestellung vereinbart werden!

²⁾ 30 mm Rohdurchmesser

³⁾ Empfohlene Wanddickenbereiche fett gedruckt

 $^{^{\}rm 4)}$ Für Abnahmezwecke ist der Probentyp bei Bestellung festzulegen

⁵⁾ Diese Werte sind Anhaltswerte

⁶⁾ Werte DIN EN 1561 zum Vergleich

Gusseisen mit Kugelgraphit

Technologische und physikalische Werte (DIN-Werte in Klammern zum Vergleich)

Werkstoffbezeichnung nac DIN EN 1563		Einheit	EN-GJS- 350-22-LT	EN-GJS- 400-18-LT	EN-GJS- 400-18	EN-GJS- 500-7	EN-GJS- 600-3	EN-GJS- 700-2	EN-GJS- 800-2
			EN-JS 1015	EN-JS 1025	EN-JS 1020	EN-JS 1050	EN-JS 1060	EN-JS 1070	EN-JS 1080
Zugfestigkeit 1)	R_{m}	min. MPa	350	400	400	500	600	700	800
0,2%-Dehngrenze 1)	R _{p0,2}	min. MPa	220	250 (240)	250	320	380 (370)	440 ²⁾ (420)	500 2 (480)
Bruchdehnung ¹⁾	Α	%	22,0	20,0 (18,0)	18,0	8,0 (7,0)	4,0 (3,0)	3,0 (2,0)	2,0
Brinellhärte [1]		НВ	110 – 150	120-160	140-190	170 – 220	200 – 250	230 – 280	250 – 330
Gefüge			ferritisch	ferritisch	vorwiegend ferritisch	ferritisch perlitisch	perlitisch ferritisch	vorwiegend perlitisch	perlitisch
ISO-V-Kerbschlagarbeit (Mittel aus 3 Proben) Bei -40 ± 2 °C Bei -20 ± 2 °C Bei +23 ± 5 °C	K _v	min. J	12,0 17,0 ³⁾	12,0 14,0 ³⁾					
Scherfestigkeit	σ_{aB}	MPa	315	360	360	450	540	630	720
Torsionsfestigkeit	T _{tB}	MPa	315	360	360	450	540	630	720
Elastizitätsmodul (Zug und Druck)	E	GPa	170	170	170	175	175	175	175
Poisson-Zahl	V	-	0,280	0,280	0,280	0,280	0,280	0,280	0,280
Dauerschwingfestigkeit (Wöhler (Umlaufbiegeversuch) ⁴⁾ ungekerbte Probe, (Ø 10,6 mm)	r) σ _D	MPa	180	195	195	224	248	280	304
Dauerschwingfestigkeit (Wöhler (Umlaufbiegeversuch) ⁴⁾ gekerbte Probe ⁵⁾ , (Ø 10,6 mm)	·) σ _D	MPa	114	122	122	134	149	168	182
Dauerfestigkeit bei Zug- Druck-Beanspruchung	δ_{zdW}	MPa	±100	±110	±110	±150	±175	±200	-
Druckfestigkeit	σ_{dB}	MPa	_	700	700	800	870	1000	1150
Bruchzähigkeit	K _{Ic}	MPa · ₁√m	310	300	300	250	200	150	140
Wärmeleitfähigkeit bei 300 °C	λ	W/(m·K)	36,2	36,2	36,2	35,2	32,5	31,1	31,1
Spezifische Wärmekapazität bei 20 °C bis 500 °C	С	J/(kg·K)	515	515	515	515	515	515	515
Thermischer Längenausdehnun bei 20 °C bis 400 °C	ıgskoe α	effizient µm/(m · K)	12,5	12,5	12,5	12,5	12,5	12,5	12,5
Dichte	Q	g/cm ³	7,1	7,1	7,1	7,1	7,2	7,2	7,2
Maximale Permeabilität	μ	μH/m	2136	2136	2136	1596	866	501	501
Hystereseverluste (B = 1 T)		J/m³	600	600	600	1345	2248	2700	2700
Spezifischer elektrischer Widerstand	Q	μΩ·m	0,50	0,50	0,50	0,51	0,53	0,54	0,54
Schwindmaß ⁶⁾		%				0,2 - 1,0			

Probestücke nach DIN EN 1563

Literaturhinweise

¹⁾ Eigenschaften im getrennt gegossenen Probestück

²⁾ Bei Vergütung höhere Werte

³⁾ Richtwerte

⁴⁾ Probe für Dauerfestigkeitsprüfung

 $^{^{5)}}$ 10,6 mm Ø an der 45° Spitzkerbe mit 0,25 mm Radius, siehe [2] [3]

⁶⁾ Abhängig von Gestalt und Größe des Gussstückes

^[1] Engineering data on nodular cast irons, SI-Units, BCIRA 1986

^[2] Gilbert, G.N.J.; Journal of Research and Development 4 (1953), No. 10; p. 458-478 (BCIRA Research Report 348)

^[3] Palmer, K.B.; Gilbert, G.N.J.; Journal of Research and Development 5 (1953), No. 1;p. 2-14 (BCIRA Research Report 361)

^[4] Siefer, W.; Orths, K.; Gießereiforschung 23 (1971) Nr. 2; Seite 43-55

Auf das Gussstück bezogene mechanische Eigenschaften

	Wanddic	ke [mm]	Erwartungswerte im Gussstück, min.			
FERROCAST®	von	bis	Zugfestigkeit [MPa]	0,2 %-Dehngrenze [MPa]	Bruchdehnung [%]	
EN-GJS-350-22U-LT EN-JS 1019	30 60	30 60 200	350 330 320	220 210 200	22 18 15	
EN-GJS-400-18U-LT EN-JS 1049	30 60	30 60 200	400 390 370	240 230 220	18 15 12	
EN-GJS-400-18U EN-JS 1062	30 60	30 60 200	400 390 370	250 250 240	18 15 12	
EN-GJS-500-7U EN-JS 1082	30 60	30 60 200	500 450 420	320 300 290	7 7 5	
EN-GJS-600-3U EN-JS 1092	30 60	30 60 200	600 600 550	370 360 340	3 2 1	
EN-GJS-700-2U EN-JS 1102	30 60	30 60 200	700 700 660	420 400 380	2 2 1	

Anmerkung: Gewährleistung von Eigenschaften im Gussstück nur bei besonderer Vereinbarung. Durch gezielte Maßnahmen in der Fertigung sind auch höhere Werte als oben angegeben erreichbar. Werkstoffbezeichnung nach DIN EN 1563 (Angussproben).

Mechanische Eigenschaften im angegossenen Probestück

(DIN-Werte in Klammer z. Vgl.)

FERROCAST®			EN-GJS- 350- 22U-LT	EN-GJS- 400- 18U-LT	EN-GJS- 400-18U	EN-GJS- 500-7U	EN-GJS- 600-3U	EN-GJS- 700-2U
	Maßgebliche Wanddicke im Gussstück [mm]	Dicke des angegossen Probestücks [mm]	EN- JS 1019	EN- JS 1049	EN- JS 1062	EN- JS 1082	EN- JS 1092	EN- JS 1102
Zugfestigkeit	30 – 60	40	330	390	390	450	600	700
R _m min. [MPa]	60 – 200	70	320	370	370	420	550	660
0,2% Dehngrenze	30 – 60	40	220 (210)	250 (230)	250	300	360	400
R _{p0,2} min. [MPa]	60 – 200	70	210 (200)	240 (220)	240	290	340	380
Bruchdehnung	30 – 60	40	18,0	18,0 (15,0)	17,0 (15,0)	8,0 (7,0)	3,0 (2,0)	3,0 (2,0)
A min. [%]	60 – 200	70	15,0	14,0 (12,0)	14,0 (12,0)	6,0 (5,0)	2,0 (1,0)	2,0 (1,0)
Kerbschlagarbeit Kv min. [J]	30 – 60	40	12,0 ¹⁾	14,0 (12,0)		-	-	_
bei –20 ± 2 °C (Mittel aus 3 Proben)	60 – 200	70	10,0 ¹⁾	12,0 (10,0)		-	-	_
Kerbschlagarbeit Kv min. [J] bei $+23\pm5^{\circ}\mathrm{C}$ (Mittel aus 3 Proben)	30 – 60	40	17,0 ²⁾	14,0 ²⁾	_	<u>-</u>	_	_
	60 – 200	70	15,0 ²⁾	12,0 ²⁾	_	-	_	_

 $^{^{1)}}$ Diese Werte bei –40 \pm 2 °C; $^{2)}$ Richtwerte

Anmerkung: Gewährleistung von Eigenschaften im angegossenen Probestück nur bei besonderer Vereinbarung. Diese Tabelle gilt vornehmlich für Gussstücke mit Gewichten über 2000 kg und oder Wanddicken von 50 bis 200 mm.

Bainitisches Gusseisen mit Kugelgraphit

Werkstoffbezeichnung nach DIN EN 1564 ¹⁾	EN-GJS-800-8 EN-JS 1100	2)	EN-GJS-1000-5 EN-JS 1110	EN-GJS-1200-2 EN-JS 1120	EN-GJS-1400-1 EN-JS 1130
FERROCAST®	ADI 800	ADI 900	ADI 1000	ADI 1200	ADI 1400
Zugfestigkeit R _m min. [MPa]	800	900	1000	1200	1400
0,2 % Dehngrenze R _{p0,2} min. [MPa]	500	675	700	850	1100
Bruchdehnung A min. [%]	8	8 – 12	5	2	1
Härtebereich [HB]	260 – 320	280 – 330	300 – 360	340 – 440	380 – 480

¹⁾ FERROCAST®-Werte teils günstiger

Werkstoffe für Schneid- und Umformwerkzeuge (VDI 3388) Gusseisen mit Kugelgraphit

Werkstoffbezeichnung ¹⁾	Legierungselemente 3)	Eigenschaften
EN-GJS-400-15 EN-JS 1030		Schweißen ohne Vorwärmen möglich, gut bearbeitbar, vorwiegend ferritisches Gefüge Zugfestigkeit mindestens: $R_{\rm m}=400~{\rm MPa}$
EN-GJS-600-3 EN-JS 1060		Schweißen ohne Vorwärmen möglich, gut bearbeitbar, perlitisches/ferritisches Gefüge, bedingt randschichthärtbar, nitrierbar, gut härtbar mittels Laserstrahl Zugfestigkeit mindestens: $R_{\rm m}=600~{\rm MPa}$
EN-GJS-HB 265 EN-JS 2070	Mo ca. 0,5 % Ni ca. 1,0 %	Schweißen ohne Vorwärmen möglich, gut bearbeitbar, perlitisches Gefüge, höchste Verschleißfestigkeit, gut randschichthärtbar, nitrierbar Härte im Anlieferungszustand HB: 220 – 270 ²⁾

¹⁾ nach DIN EN 1563

Werkstoffe für Schneid- und Umformwerkzeuge (VDI 3388) Gusseisen mit Lamellengraphit

Werkstoffbezeichnung ¹⁾	Legierungselemente 3)	Eigenschaften
EN-GJL-HB 195 EN-JL 2030		Schweißen ohne Vorwärmen möglich, Arbeitskanten porenfrei, gut zerspanbar Härte im Anlieferungszustand HB: 160 – 210 ²⁾
EN-GJL-HB 255 EN-JL 2060	Cr ca. 0,5 % Mo ca. 0,75 %	Schweißen ohne Vorwärmen möglich, hohe Verschleißfestigkeit, gut bearbeitbar, randschichthärtbar, Härte im Anlieferungszustand HB: 210 – 250 ²⁾

¹⁾ nach DIN EN 1561

²⁾ Sonderwerkstoff (nicht genormt)

²⁾ gemessen auf der Arbeitsfläche mindestens 3 mm unter der Gusshaut

³⁾ Legierungselemente als Richtwerte der maßgebenden Wanddicke im Arbeitsbereich des Gussstückes angepasst (Empfehlung)

²⁾ gemessen auf der Arbeitsfläche mindestens 3 mm unter der Gusshaut

³⁾ Legierungselemente als Richtwerte der maßgebenden Wanddicke im Arbeitsbereich des Gussstückes angepasst (Empfehlung)

Nach Härte konzipierte Sorten

Gusseisen mit Lamellengraphit

Bezeichnung nach	Maßgebende W	/anddicke [mm]	Brinellhärte ^{1) 2)} [HB]		
DIN EN 1561	über	bis	Min.	Max.	
EN-GJL-HB 155 EN-JL 2010	40 ³⁾ 20 10 5 2,5	80 40 20 10 5	- - - - -	155 160 170 185 210	
EN-GJL-HB 175 EN-JL 2020	40 ³⁾ 20 10 5 2,5	80 40 20 10 5	100 110 125 140 170	175 185 205 225 260	
EN-GJL-HB 195 EN-JL 2030	40 ³⁾ 20 10 5 4	80 40 20 10 5	120 135 150 170 190	195 210 230 260 275	
EN-GJL-HB 215 EN-JL 2040	40 ³⁾ 20 10 5	80 40 20 10	145 160 180 200	215 235 255 275	
EN-GJL-HB 235 EN-JL 2050	40 ³⁾ 20 10	80 40 20	165 180 200	235 255 275	
EN-GJL-HB 255 EN-JL 2060	40 ³⁾ 20	80 40	185 200	255 275	

 $^{^{1)}}$ Bei jeder Sorte nimmt die Brinellhärte mit zunehmender Wanddicke ab

Gusseisen mit Kugelgraphit

Bezeichnung nach	Brinellhärtebereich [HB]	Weitere Eigenschaften (nur zur Information)			
DIN EN 1563		Zugfestigkeit [MPa]	0,2 %-Dehngrenze [MPa]		
EN-GJS-HB 130 EN-JS 2010	unter 160	350	220		
EN-GJS-HB 150 EN-JS 2020	130 – 175	400	250		
EN-GJS-HB 155 EN-JS 2030	135 – 180	400	250		
EN-GJS-HB 185 EN-JS 2040	160 – 210	450	310		
EN-GJS-HB 200 EN-JS 2050	170 – 230	500	320		
EN-GJS-HB 230 EN-JS 2060	190 – 270	600	370		
EN-GJS-HB 265 EN-JS 2070	225 – 305	700	420		

Wenn zwischen Hersteller und Käufer vereinbart, darf für eine vereinbarte Stelle des Gussstückes einem engeren Härtebereich zugestimmt werden, vorausgesetzt, er ist nicht enger als 40 Brinelleinheiten.

²⁾ Wenn zwischen Hersteller und Käufer vereinbart, darf für eine vereinbarte Stelle des Gussstückes einem engeren Härtebereich zugestimmt werden, vorausgesetzt, er ist nicht enger als 40 Brinelleinheiten.

³⁾ Maßgebende Referenzwanddicke für die Sorte

ARBEITS GEMEINSCHAFT QUALITÄTSGUSS e.V.

AGQ – eine starke Gemeinschaft – eine zuverlässige Partnerschaft

Die AGQ ist eine Gemeinschaft von Gießereien, die durch ständige technische Zusammenarbeit und interne sowie externe Qualitätsüberwachung hochwertige Gusserzeugnisse unter der Werkstoffbezeichnung FERROCAST herstellen.

Gemeinsame Forschungsarbeiten sichern den technischen Vorsprung.

"Wir bringen Ideen in Form"

"Wir sind Partner der Profis"

"Wir denken in Prozessen"

"Wir sind besser als die Norm"

Kontaktadresse: AGQ Center Ulrich Becker

Am Pfarrhof 4 · D-89437 Haunsheim-UB · Telefon und Fax 0 90 77/10 26 E-mail: U.Becker-UB@t-online.de · Internet: www.agq.de

Qualitätsguss spart Kosten, Zeit und viel Ärger.